Market Drivers for Embedded Components Packaging

E. Jan Vardaman, Linda C. Matthew, Karen Carpenter

TechSearch International, Inc.

www.techsearchinc.com
Materials are added to the printed circuit structure to create the passive element.

The component is placed on an internal layer then buried as additional layers are added.

Source: JISSO International Council, May 2004
Embedded in Substrates: A Look Back

- Companies embedding discrete passives into modules
 - Module size reduction
 - Improved performance
 - Driven by trends in portable products
 - Examples in production include products from Taiyo Yuden, DNP, etc.
 - PCB with 250 components (0603s) embedded
- Many research projects and roadmaps
 - European Hiding Dies project
 - Fraunhofer “Chip in Polymer” process
 - Casio and CMK EWLB consortium
 - Motorola’s embedded passives demonstration vehicle
- Examples of embedded active components
 - Casio watch modules (2006)
 - Digital TV tuner modules (2006-2007)
 - Ericsson mobile phone with RF device embedded in Clover’s PCB (200?)
 - AT&S test vehicles (various)
 - TI switching regulator (2010)
 - Many demonstration vehicles
Casio, CMK, and Imbera Embedded Structures

- Casio embedded WLP in production in watch modules
- Casio, CMK, others in Japanese consortium—expect some standards to emerge
- Imbera technology licensing agreements, but Imbera no longer exists as a company developing technology

Source: Casio, CMK, and Imbera
Casio EWLP

No Solder Ball!

- Copper Bump (Post)
- Encapsulation Material (Epoxy Resin)
- LSI Chip
- Copper Redistribution
- Passivation Layer (Polyimide)

Subtractive Method
Electroless Cu Plating

Electro Cu Plating

Circuit Generation

Solder Mask

Terminal Finish (Solder Ball Attach)

Diecing

Source: Casio Computer

© 2013 TechSearch International, Inc.
Formed Thick Film Capacitors

Motorola Mezzanine in GSM SOM

- 2+4+2 HDI EP PWB
 - Microvias on Filled Core Vias
 - Stacked microvias
- 26 embedded Gen 2 caps on layers 2 and 9

Source: Motorola
BossB2it and B2itPWB with Embedded Active

- Buried Bump Interconnection Technology Offered by DNP

Source: Dr. Fukuoka, Weisti, Surtech 2006 Cross Section
Clover’s Embedded Active Device

- > 1 millions PCBs with embedded RF device for Ericsson mobile phone
- Clover (Japan) was purchase by Unimicron (Taiwan)
Printed Circuit Board Trends with Embedded
Why Embedded Components Today?

• Small form factor (reduced Z-height), enables reduced board thickness
 – Provides low profile SiP for mobile applications
 – Embedded die in bottom of PoP substrate
 – Alternative until 3D IC with TSV ready for HVM
 – Includes fan-out WLP packages

• Improved performance
 – Shorter electrical path, EMI reduction,
 – Passive devices (capacitors today, high capacitance material in future)

• Shielding advantages for RF components

Source: TI
Fan-Out Wafer Level Packages

- Fan-out WLP can be considered an embedded package
- Fan-out WLP from ADL Engineering, Amkor, ASE, Deca Technologies, Freescale Semiconductor, FCI/Fujikura, J-Devices, NANIUM, Nepes, STATS ChipPAC, YOUR NAME HERE
- Infineon eWLB (wireless operation acquired by Intel)
 - Technology licensed by ASE, STATS ChipPAC, NANIUM
 - Companies have installed production lines

Source: Infineon

- Achieved by conventional back-grinding process
- Thinner profile results in more compliant structure
- Better BLR, DT & TCoB performance

Source: STATSChipPAC
Projected Demand for Fan-Out WLPs in Units

- Unit shipments increased from 513 million units in 2011 to 616 million units in 2012
- Growth continues
- Multiple die can be packaged in fan-out, some panel configurations are used and can be considered embedded die packages (EDPs)
- Demand for fan-out will increase if cost, reliability, and supply targets can be met
Embedded Devices Today

- **Embedded actives:**
 - Driver—package thinness
 - Secondary advantages are improved robustness and security
 - First applications—ultra-thin PoP for mobile products
 - Technology—thin-film, laminated or build-up
 - Companies with embedded die PoP activities ASE, AT&S, DNP, FlipChip International/Fujikura, J-Devices, NANIUM, Shinko Electric, STATS ChipPAC

- **Embedded passives in IC packages and PCBs:**
 - Driver—decoupling capacitance close to the processor to enable higher operating frequencies
 - First applications—application processors for mobile phones with embedded capacitors in production
 - Mother board with MLCC/resistor
 - Follow-on applications—high-end networking and communications
 - Technology—primarily capacitors in build-up or laminated substrates
 - Companies including Ibiden, DNP, Fujikura, Fuji Print, KOA, Meiko Electronics, Oki Print, Samsung Electro-Mechanics (SEMCO), Shinko Electric, Taiyo Yuden, TI, etc.
Application Processors for Smartphones

- Increasing number of examples of application processors with embedded capacitors in package substrate
 - Example of Exynos processor in Samsung smartphones
- Thinner package and smaller footprint
 - Goal of less than 1.0mm thick packages
 - Improved performance

Source: TPSS
DNP’s e-B2it™ Substrate with Embedded Active

- Coreless substrate with random or stacked vias
- WLP connected with solder attach or Au bump bare die
- Under evaluation for Near Field Communication/Radio Frequency (NCF/RF) modules, CMOS image sensors, and baseband processor modules

Source: Renesas
Shinko Electric’s MCeP Structure

- Chip Capacitor
- Memory Device Package
- Upper Substrate
- Copper Core Solder Ball
- Embedded Layer
- Base Substrate
- Flip Chip Attach (Au bump + Sn-Ag solder)
- Bare IC

Source: Shinko Electric
ASE’s a-EASI Embedded Chip Package

• Single package with one embedded or 2 to 3 side-by-side embedded chips or passives
• Embedded thin chips in build-up substrate
 – Electrical contacts to chip by laser drilling and metallization of microvias
 – Known Good Substrate provides yield enhancement
 – Prefabricated substrate, embed die or component, substrate interconnection and build-up process
 – Reliability test reported good (no cracking)
• Customer evaluations underway
FlipChip International’s Chiplet™

- Partnership with Fujikura (Japan)
- WLP embedded using Fujikura’s flex-based laminate processes
- Examples of both actives and passives
J-Devices WFOP™ Roadmap

- J-Devices (Japan) OSAT (Amkor/Toshiba ownership) developed embedded solution
- Die sits on metal plate (acts as heat spreader)
- RDL to fan-out die based on PCB technology
- Processed in panel

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Density</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pad pitch</td>
<td>50umP.P. Inline</td>
<td>40umP.P. Inline</td>
<td>30umP.P. Inline</td>
</tr>
<tr>
<td>Line / Space</td>
<td>20/20um</td>
<td>15/15um</td>
<td>10/10um</td>
</tr>
<tr>
<td>RDL</td>
<td>1-Layer</td>
<td>≥ 2-Layers</td>
<td></td>
</tr>
<tr>
<td>Thinner</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package thickness</td>
<td>0.7max</td>
<td>≤ 0.4mm</td>
<td></td>
</tr>
<tr>
<td>Thermal performance</td>
<td>Base plate</td>
<td>SUS</td>
<td>Copper</td>
</tr>
<tr>
<td>Multi-die</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D</td>
<td>Single die</td>
<td>Multi die</td>
<td></td>
</tr>
<tr>
<td>3D</td>
<td>Package Stack (PoP)</td>
<td>Die Stack (Embedded)</td>
<td></td>
</tr>
</tbody>
</table>

Source: J-Devices
Taiyo Yuden’s EOMIN® Embedded Substrate
Texas Instruments MicroSIP™ DC/CD Converter

- PCB (substrate)
- Embedded PicoStar™ DC/DC converter
- Integrated passives (L, CIN, COUT)
- Released to market

0402 Caps, 2012 Inductor

Source: Texas Instruments
Embedded Components Challenges

• Deviation from Traditional Assembly Model: OSAT needs substrate capability or close partner

• Assembly Yield
 – Typical assembly process die are connect to known good substrates and assembly yield is typically greater than 99%
 – Good die may be lost to substrate build-up process yield
 – Companies working on strategies to minimize effect of substrate yield loss

• Cycle Time
 – Substrate fabrication becomes a serial event in packaging flow so assembly cycle time similar to laminate substrate cycle time
 – Laminate substrate cycle time is longer than traditional assembly cycle time
 – Thin-film type process requires serial processing

• Functional testing of embedded die substrate in strip form

• Embedded die technologies appropriate for
 – Embedding lower value, high yielding die where high interconnect density is required on both sides of the substrate
 – RF modules where embedding tested die allows high density SMT on top
 – Some analog parts
 – Capacitors for improved performance
Conclusions

• Embedded device market has arrived
 – Driven by form factor and performance
• Solutions in the market today, more to arrive
 – Embedded actives for PoP and other packages
 – Embedded passives for application processor and other packages
 – Embedded actives
• Issues with previous generation products being solved
 – Thin die handling
 – Use of high yielding die
 – Assembly method improvements
 – Cost reduction