System in Package Solutions using Fan-Out Wafer Level Packaging Technology

J. Campos; S. Kroehnert; E. O’Toole; V. Henriques; V. Chatinho; A. Martins; J. Teixeira; A. Cardoso; A. Janeiro; I. Barros; O. Tavares; R. Almeida

June 27th, 2013
Content

- Introduction to FO-WLP and WLSiP
- Enablers of WLSiP
- WLSiP developments based on FO-WLP
- Summary & Conclusions
- Acknowledgement
Content

- Introduction to FO-WLP and WLSiP
- Enablers of WLSiP
- WLSiP developments based on FO-WLP
- Summary & Conclusions
- Acknowledgement
Introduction to FO-WLP technology

- FO-WLP eWLB technology is based on:
 1. BE wafer on a carrier with KGD’s (reconstituted wafer)
 2. Wafer Level Compression Molding

eWLB = Embedded Wafer Level Ball grid array
Introduction to FO-WLP technology

- FO-WLP eWLB technology is based on:
 3. RDL using Thin Film Technology
 4. Wafer Level Preformed Bumps Drop Process
 5. Wafer Level Component Singulation Process
Introduction to FO-WLP technology

- Based on Infineon’s / IMC eWLB technology
- First ever 300mm Fan-out WLP realization!
- Production line in high volume since Q3-2010
- Shipped more than 350 Million eWLB packages since then!
- Proven technology with 99% plus yield levels
Advantages of FO-WLP technology

- Diameter of the reconstituted wafer independent of original silicon wafer;
- Adaptable fan-out area and solution for I/O Gap;
- Smaller and Thinner form factor;
- Improved electrical and thermal performance;
- Lower unit cost due to 300mm wafer level batch processing;
- Simplification of Bill of Material, Supply Chain and Manufacturing Infrastructure;
- Enabler for SiP / 3D Integration and further miniaturization → WLSiP System-in-Package on Wafer Level
Introduction to WLSiP
Packaging Technology Trend

Assembly & Packaging was simply needed to:
- Protect the chip
- Get it into the tester
- Get it mounted to the board w/ available SMT
- Redistribution of the contacts due to the pitch gap die to board

System integration on package level adds value to the product:
- SIP and finally SOP as complimentary, but also alternative integration technology compared to SOC
Today the majority of SiP is realized using laminated organic substrate based packages (BGA and LGA);

Need to close the gap to System-on-Chip (SoC) performance, where short connections between the functional areas are inherent.
Introduction to WLSiP

Packaging Technology Trend

Driver A): Cost, Performance, Miniaturization
Solution: Large Scale Panel, Batch Processing
→ Wafer Level Packaging (WLCSP)

Driver B): More functionality on same or less space
Solution: System Integration, „More than Moore“
→ System-in-Package (SiP)

WLSiP Enabled by FO-WLP eWLB
Content

- Introduction to FO-WLP and WLSiP
- **Enablers of WLSiP**
 - WLSiP developments based on FO-WLP
- Summary & Conclusions
- Acknowledgement
Enablers of WLSiP

Building blocks to enable WLSiP

- Multi-Layer RDL Development
- Discrete Passives Integration
- Mold Edge, Die-to-Die Distance Reduction
- New Dielectric Materials Introduction
- High Power Dissipation Solutions
- Reduced RDL Line/Space Development
- Thru Package Via / Double Sided RDL Development
- Package Size and Height Requirements
- Solder Ball / Pad Pitch Reduction
Enablers of WLSiP

Multi Layer RDL

Motivations:

- Higher routing level with more I/Os and traces
- Shield and Power Dissipation needs
- Enabler of further form factor reduction
Enablers of WLSiP
Reduced RDL Line Width / Space

Reduction of line width/space, places higher challenges to lithography => Better optical resolution dielectrics and higher accuracy mask aligners are necessary

- Daisy Chain test chips with line width/space structures from 20µm to 13µm
- Included meanders test structures for Leakage Current measurements
Enablers of WLSiP

Reduced Die-2-Die and Package Edge Distances

- Critical design rules for the final SiP form factor
 - Benefiting from its reconstruction characteristics, eWLB can achieve very small distances w/ high accuracy
 - Actual Die-2-Die distance of 200um is proven at NANIUM. Next developments will enable 120um & 50um
 - Actual Die-2-Pkg-Edge distance of 500um was challenged to the minimum (50um / 75um / 100um)
Enablers of WLSiP

Discrete Passives Integration

- Discrete passives, besides the active dies, are today the major component type integrated in SiP
- Moved from the board space around the packaged die closer to the die (inside SiP)
- Placement accuracy, component movement during and after wafer molding, interconnect behavior to the RDL was tested with good results.
Content

- Introduction to FO-WLP and WLSiP
- Enablers of WLSiP
- WLSiP developments based on FO-WLP
- Summary & Conclusions
- Acknowledgement
System integration required for Consumer Market:
- increased functionality in less space – “More than Moore”
- lowest package dimension
- lowest cost

SiP eWLB multi-die package:
- Side-by-Side and Stacked C2W construction
- Minimum die-to-package edge distance
- Minimum die-to-die distance
- Increased Si content

Example of application: Sensor & ASIC SiP (MEMS)
Example of a test vehicle 1:

- Package size = 4.7mm2
- Package Height < 1.0mm
- Si ratio = 69%
- Nr. I/Os per package = 10
- Min. die-to-pkg edge distance = 100um
- Die-to-die distance < 200um
- Multi-Design reconstituted wafer
- Nr. systems per 300mm reconstituted wafer > 13,000
Example of a reconstituted 300mm wafer
WLSiP developments based on FO-WLP
Very Small Side-by-Side WLSiP

- Example of a reconstituted 300mm wafer
WLSiP developments based on FO-WLP

Highly Integrated Side-by-Side WLSiP

- High Density integration for custom applications:
 - Enhanced electrical & thermal performance
 - Substrate less technology
 - Smaller form factor & reduced module thickness

- SiP eWLB with side-by-side multi-die package:
 - Increased number of active devices (e.g.:10)
 - Minimum die-to-die distance
 - RDL & u-bumping & Edge Connectors as a replacement of interposers and other interconnect elements
Heterogeneous integration for flexible product design:

- Easy integration of active & passive devices
- Flexible integration of devices of different types and with different form factors
- Multi-Design Reconstituted Wafer
- Enabling of 3D Stacking
Heterogeneous 3D SiP eWLB multi-die package:
- Increased number of active & passive devices
- Minimum die-to-die distance
- Handling very small dies
- Multi Layer RDL and reduced via opening
- Handling different loading media and device thicknesses
- 3D Stacking enabling by using eWLB & WDoD™
WLSiP developments based on FO-WLP

Heterogeneous Integration using FO-WLP

Example of a test module 1:
- Module size ~ 38mm²
- Module Height = 0.2mm
- Nr. dies per module = 2 active + 7 Cap + 1 Diode
- Die-to-die distance < 200um
- Min. Die size = 660um
WLSiP developments based on FO-WLP

Heterogeneous Integration using FO-WLP

- Example of a test module 2:
 - Module size = 361mm²
 - Module Height = 0.2mm
 - Nr. dies per module = 3
 - Die pad size & pitch = 47um / 52um staggered
 - Multi Layer RDL
 - Via opening = 15um
 - Line Width / space = 20um
Content

- Introduction to FO-WLP and WLSiP
- Enablers of WLSiP
- WLSiP developments based on FO-WLP
- Summary & Conclusions
- Acknowledgement
Summary & Conclusions

- eWLB is a FO-WLP technology that presents competitive advantages to enable SiP solutions based on WLP

- Enabling of WLSiP requires the development of several technology bricks like:
 - multi-layer RDL;
 - fine RDL line width & space;
 - reduced die-2-die & die-2-package edge distances
 - integration of discrete passive devices

- NANIUM has successfully completed several development projects on its FO-WLP eWLB technology in the direction of WLSiP
Summary & Conclusions

- NANIUM developed successfully several WLSiP test vehicles / demonstrators for its customers, based on its eWLB technology like:
 - Very small SbS WLSiP
 - Small Stacked C2W WLSiP
 - Highly Integrated SbS WLSiP
 - Heterogeneous Integration WLSiP

- These developments extend the capabilities of FO-WLP eWLB and enlarge its application fields in the direction of SiP solutions
Acknowledgement

Special thanks to all Co-authors:

- Steffen Kroehnert (Technology Director)
- Eoin O’Toole; Vitor Henriques; Vitor Chatinho; Alberto Martins; Jorge Teixeira; André Cardoso (Process Integration)
- Abel Janeiro (Package Design)
- Isabel Barros (Material Development)
- Oriza Tavares (QA Reliability Engineering)
- Rodrigo Almeida (Product Engineering)

... and to all our customers that are working with us in some of the disclosed projects, and namely 3D PLUS on the joint development projects of 3D Integration.
Thank you for your attention

NANIIUM S.A.
Avenida 1º de Maio 801
4485-629 Vila do Conde
Portugal