Advancing high performance heterogeneous integration through die stacking

Suresh Ramalingam
Senior Director, Advanced Packaging

European 3D TSV Summit
Jan 22–23, 2013
The First Wave of 3D ICs

IBM Demonstrates 3D Chip Technology in Micron Memory Cube

Richard Wilson
Friday 02 December 2011 00:01

IBM has announced that Micron will begin production of a memory device built using its commercial CMOS manufacturing technology to employ through-silicon vias (TSVs).

COMPUTERWORLD

Apple's A6 processor: 28-nm, 3D IC and made by TSMC

By Jonny Evans

July 15, 2011 - 5:37 A.M.

While we wait for Lion, interesting to note the next Apple [AAPL] A6 processor will be made by Taiwan Semiconductor Manufacturing Co. (TSMC) and will be a 3D IC 28-nanometer low-power powerhouse, sweetly tucked inside your iPhones and future model iPads.
Why Now?

Market: Insatiable Bandwidth

- 64 Exabytes/mo. of IP Traffic
- 34% CAGR

Technology: Cost, IO

- Power density is primary limiting factor: gates and I/O
- SOC’s & platforms: demand highest performance/watt
- 15x drop in I/O-to-logic ratio by 2020

Source: ITRS
What Does 3D Buy Us?

- Connectivity
- Capacity
- Crossovers
Connectivity
Enables High Bandwidth, Low Power Die-to-Die Communication

100x bandwidth/watt advantage over conventional methods
Capacity Beyond Moore’s Law

Big Single Monolithic Die

- Greater capacity, faster yield ramp

Multiple Small Die Slices

- Exponential Dependency
- Linear Dependency (Bali)

Greater capacity, faster yield ramp
“Crossover SoCs” with Heterogeneous Die

A crossover is a vehicle built on a car platform and combining, in highly variable degrees, features of a traditional sport utility SUV with features from a passenger vehicle.
OSAT Co(CoS) Process Flow

1. Wafer with TSV u-pad/bump, Probe
2. Carrier Mount Thin & TSV Reveal UBM & C4-bump
3. Carrier De-mount to Film frame
4. Dice
5. Interposer-on-Substrate
6. Package
Virtex-7 2000T: Homogeneous Stacked Silicon Interconnect (SSI) technology

- Virtex-7 2000T – 2 million logic cells
 - ~2,000 BGA balls
 - ~20,000 C4 bumps
 - ~200,000 ubumps
 - ~6.8B transistors
- 4-layer metal Si interposer with TSV
- 4 FPGA sub-die in package
- >10,000 inter-die connections
- Shipping today
Heterogeneous Integration
What happened to System on a Chip?

<table>
<thead>
<tr>
<th></th>
<th>Logic</th>
<th>Memory</th>
<th>Analog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Revenue 2011</td>
<td>$150B</td>
<td>$68B</td>
<td>$45B</td>
</tr>
<tr>
<td>Moore Scaling</td>
<td>Good</td>
<td>Good</td>
<td>Poor</td>
</tr>
<tr>
<td>Technology “Vintage”</td>
<td>2012</td>
<td>2012</td>
<td>2000</td>
</tr>
<tr>
<td>Transistor Characteristics</td>
<td>High performance/ Low leakage</td>
<td>Low leakage/ moderate performance</td>
<td>Stable with good voltage headroom</td>
</tr>
<tr>
<td>Metallization</td>
<td>>9 layers</td>
<td><5 layers</td>
<td><6 layers</td>
</tr>
<tr>
<td>Differentiators</td>
<td>High density logic</td>
<td>Charge storage</td>
<td>Passives, Optical</td>
</tr>
</tbody>
</table>
What’s the problem with multiple packages?

➤ The packaging chasm:
 - Two orders difference in package trace/width vs silicon metallization
 - I/O also isn’t scaling due to bump pitch and chip to chip loading issues
 - Leads to increased area, power and complexity (SERDES)

To scale in X dimension
Virtex-7 HT: Heterogeneous SerDes

Top View
- 28G SerDes
- Fabric Interface
- Passive Interposer
- TSVs

Cross Section
- Yield optimized
- Noise isolation
- 28G process optimized for performance
- FPGA process optimized for power

- 2.8Tb/s ~3X Monolithic
- 16 x 28G Transceivers
- 72 x 13G Transceivers
- 650 GPIO

© Copyright 2013 Xilinx
Virtex-7 H580T – Dual FPGA Slice with 8x28Gb/s Serial Transceivers
Interposer Routing & DCAP

- Wire coupling, no shielding
- Wire coupling, with shielding

SSN, no DCAP
SSN, with DCAP

Wire Length Histogram

3mm
6mm
SSI Enables Scalable FPGAs

XC7VH290T
- GTZ-IC
- FPGA
- GTH
- GTH

XC7VH580T
- GTZ-IC
- FPGA
- GTH
- GTH

XC7VH870T
- GTZ-IC
- FPGA
- GTH
- GTH

Network
- 2 x 100G

GTZ (28G)
- 8

GTH (13G)
- 24

Logic Cells
- 284K

Logic Cells
- 580K

Logic Cells
- 876K

1 x 400G or 4 x 100G
- 16

- 72

- 876K

© Copyright 2013 Xilinx
High Bandwidth Integrated Memory

- Higher memory bandwidth at lower power: 1Tbps – 2Tbps
- ~1Gb/s per interposer wire
- Simple extension of existing work

Diagram:
- MAC
- Bridging FPGA
- Packet Processing/Traffic Manager
- Fabric Interface
- TCAM
- DDR3
- Bridging FPGA
- Control Plane CPU

Wired Comms Line Card

Implement in FPGA
Implement in ASIC/ASSP

© Copyright 2013 Xilinx
3D: The next frontier

Who’s on top?

- High performance chip on top for thermal and TSV process availability
- Bottom die supports power TSV’s for top die (Swiss cheese) in older technology (TSV friendly)
- Floor-planning critical:
 - Thermal concerns (stacked thermal flux)
 - TSV keep out zones in bottom die to avoid stress induced performance impact
Challenges

Cost
- Wafer backside processing is complicated
- “Device quality” wafers used for interposers
- KGD methodologies still emerging

Scalability
- Micro-bump scaling is limited
- Super-sized interposers (>30mm x 30mm).
- Improve TSV aspect ratio

Design Support
- Multi-die analysis without Multi-mode Multi-corner explosion
- Thermal modeling based on vertical hotspots
Summary

- Economic and technology forces are aligned to enable 3-D stacking

- The “end game” will see three distinct technologies: Logic, Memory, Analog

- Heterogeneous integration is already here
Thank You

Questions?
400Gb/s Line Card Application

- Up to 16 x 28 Gb/s GTZ Transceivers
- Up to 72 x 13.1 Gb/s GTH Transceivers

Diagram showing components:
- Virtex-7 HT
- Network Processor
- Fabric Interface
- Packet Queues and Lookup Memory (SRAM, TCAM, DRAM)
- 4 x 100G Optical Interface
- CFP2/CFP4 Optical Module
- Switch Fabric
- Up to 72 x 13.1 Gb/s GTH Transceivers
- Up to 16 x 28 Gb/s GTZ Transceivers