TRUE: A New Metric for ATE Cost Effectiveness

Gregory Smith, Teradyne
Teradyne Business segments

Semiconductor Test
System-On-Chip (SOC) Test
• Leading wireless, mixed signal, microcontroller and performance analog test systems
• Largest installed base with over 9,000 systems installed at IDM and OSAT customers

Memory Test
• Highest Throughput Flash and High Speed DRAM Solutions

Wireless Products
• Unique tester architecture focused on production test of mobile devices
• Products deliver highest throughput and shortest time to market
• Serves ~$1B+ wireless product test market, growing 8% - 10% per year

Systems Test Group
Defense & Aerospace Board Test
• Defacto standard for DoD digital test
Storage Test
• Industry’s most productive 2.5” HDD Systems
Commercial Board Test
• Patented low voltage test technology delivers highest yield in-circuit board test

Annual Revenue (1)

<table>
<thead>
<tr>
<th>Year</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>$1,038M</td>
</tr>
<tr>
<td>2008</td>
<td>$1,048M</td>
</tr>
<tr>
<td>2009</td>
<td>$777M</td>
</tr>
<tr>
<td>2010</td>
<td>$1,566M</td>
</tr>
<tr>
<td>2011</td>
<td>$1,429M</td>
</tr>
<tr>
<td>2012</td>
<td>$1,657M</td>
</tr>
</tbody>
</table>

(1) Revenues exclude DS which was divested in Q1’11
The 3D IC Challenge to Test

- Increased wafer sort test coverage to get to KGD quality levels to avoid excessive scrap costs for stacks
- Increased number of in process test insertions for partially completed die stacks
- Excessive test cost could preclude application of 3D-IC in cost sensitive, high volume markets
 - Memory on Logic (Application Processors)
 - Heterogeneous 3D-IC for mobile and wearable electronics
- Innovation is required to deliver a step function reduction in test cost for the 3D-IC era
Potential Strategies to Reduce Cost of Test

- **Reduce COT**
 - Reduce Test Cell Cost
 - Increase UPH
 - Increase Utilization
 - Reduce # of insertions

- **Increase UPH**
 - Higher Site Count
 - Reduce Test Time

- **Reduce Test Cell Cost**
 - Reduce CAPEX per site
 - BIST / BOST / Structural test

- **Increase Utilization**
 - Increase PTE
 - Concurrent Test
 - Eliminate ATE overhead
 - Adaptive Test

Impact

- Achieved reduction of 50% to 90% over past 5 years
 - Potential for future reductions is lower

- Impacts device AQL
 - 25% to 50% of CAPEX

- Relevant for ||8
 - 1% increase → 30% throughput above 16 sites

- Requires DFT investment
 - ~25 to 40% for CT enabled devices

- Datalog, DSP, Inst setup
 - ~10 to 20% of Test Time

- Relatively unproven
 - ~10 to 20% of Test Time

How much is possible here?
Equipment Utilization

“Classic” Definition of Utilization

25 Test Cells

- 5 Test Cells Idle / Down
- 2 cells waiting for Material
- 17 cells operating

68% Utilization (at this moment)
Average Utilization is integration over a time period
First Step: Optimize “dead time” in the test cell

- Setup tester, initiate test
- Testing the devices
- Datalogging
- Index Time

Optimizations
- Faster Computers
- Optimized SW

- ~80% → 90%
- Background Datalog
- Better at Wafer test
- More efficient handlers
But How Efficient is Device Test?

If each test takes 1 second, Tester Resource Utilization Efficiency ~ 35%
TRUE = Tester Resource Utilization Efficiency

• 35% TRUE for the example on previous slide
• Is that a good or bad number?
 – A low baseline number is an opportunity for significant improvement
• What does a higher number mean?
 – More fully utilizing capital investment
 – Optimizing configurations to requirements
Multi-Station
Index Parallel Testing

Ismeca NX16 Turret Handler

Typically used for low pin count analog dominant devices

“Typical” Specs
Minimum dwell time = 80-100ms
Index Time = 80ms to 200ms
Number of stations: 16 to 32
Test Stations: 1 to 4

Diagram courtesy of Ismeca Semiconductor
Throughput
275ms (test time)
3x80ms (non-test-dwell)
515ms (for 4 devices)
129ms/device = 28K UPH

Test List (275ms)
Test 1.0 Kelvin
Test 2.0 Iddq
Test 3.0 Idd/I
Test 4.0 Vth+
Test 5.0 Vth-
Test 6.0 Delta Vth
Test 7.0 Drop 10mA
Test 8.0 Drop 150mA
Test 9.0 Drop 300mA
Test 10.0 PSRR
Test 11.0 Load Reg
Test 12.0 I short

CAPEX: 1.0
COT: 1.0
TRUE: 16%

“Classic” Quad Site

Turret Handler

“Classic”
Quad Site

Throughput
80ms (test time)
0ms (non-test-dwell)
80ms (for 1 device)
45K UPH

CAPEX: 0.5x
COT: 0.31x
TRUE: 41%

69% lower COT

Index Parallel Test

Turret Handler

Low I VI
High I VI
Diff VM

Index Parallel Test

Turret Handler

Low I VI
Low I VI
High I VI
Diff VM
Applying the Index Parallel technique to wafer sort KGD

“Classic Multisite”
- 4 copies of resources
- Test time = ~1.2x SS

“Index Multisite”
- 2 copies of resources
- Test time = ~0.6x2 SS
- 2x more efficient
- 2x touchdowns

Appropriate for simple, low pin count die in heterogeneous stacks

Practical Implementation depends on ATE Architecture that supports running different test flows on a per site basis
MCU: TRUE Test Case

Serial Test Flow

- O/S 0.5s
- Scan 1.0s
- Mem 5.0s
- Func 3.0s
- DAC/ADC 2.5s

Concurrent Test Flow

- O/S
- Scan
- Mem
- Func
- DAC/ADC

Concurrent Test Flow with Unique Site Flows

- O/S
- Scan
- Mem
- Func
- DAC
- ADC

Practical Implementation depends on ATE Architecture that supports managing tests as blocks without modification

TT: 12
Capex: 1.0
COT: 1.0
TRUE: 53%

TT: 7.0
Capex: 1.0
COT: 0.58
TRUE: 83%

TT: 7.5
Capex: 0.8
COT: 0.51
TRUE: 85%
PMIC: TRUE Test Case

Test Plan

O / S	0.25s
Low Power Tests	1.0s
High Power Tests	1.5s
Digital Timing Tests	0.5s

Per Pin Architecture

Matrix Architecture

Practical Implementation depends on ATE Architecture that supports low cost pin multifunction pin with matrix capability
TRUE On the Test Floor

25 Test Cells

5 Test Cells Idle / Down
2 cells waiting for Material
17 cells operating
 7 at 50% TRUE
 6 at 40% TRUE
 4 at 30% TRUE
68% Utilization
28% TRUE Utilization (68% x 41%)

• Testers can be enhanced to provide real time reporting of TRUE to Test Floor management software
• TRUE statistics could be used to identify low efficiency applications
 • Increase site count
 • Increase concurrency
 • Redeploy options across test floor
Using TRUE as a tool

- **IC Design**
 - Evaluate the impact of incorporating independent control and visibility for major functional blocks to enable concurrent test

- **Tester Selection**
 - Evaluate economic impact of features to support index parallel, Concurrent and unique site flow

- **Test Solution Development**
 - Identify optimal site count and tester configuration for new devices

- **Test Floor Operations**
 - Identify test solutions with offensively low TRUE for improvements (modify tester config, increase site count, optimize test program flow)

- **ATE Design**
 - Develop tools to predict TRUE for new test solutions
 - Develop tools to monitor and report TRUE to test floor management
3D-IC requires a Step Function Reduction in Test Cost

- Devices require more test to avoid excessive scrap costs
- Many paths to reduce cost of test have already been travelled. The same tricks are not enough.
- TRUE offers a method to tap the unutilized potential of installed capital
- TRUE metrics provide a tool to find problems and improve test tests on SOC, SIP and 3D-IC devices