Advanced in-line characterization and sorting of crystalline silicon photovoltaic wafers

Workshop on Test Methods for Silicon Feedstock Materials, Bricks and Wafers, SEMI PV Materials Standards Committee
14. June 2012, ICM, Munich, Germany
Outline

- In-line characterization and sorting
- In-line measurement technologies
- Photoluminescence combined with lifetime calibration by MW-PCD technique
- Quasi-steady-state (QSS) MW-PCD technique
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk resistivity</td>
<td>✔</td>
</tr>
<tr>
<td>Thickness</td>
<td>✔</td>
</tr>
<tr>
<td>P/N conductivity type</td>
<td>✔</td>
</tr>
<tr>
<td>Lifetime by µPCD – linescan version (1-3 lines)</td>
<td>✔</td>
</tr>
<tr>
<td>Inline lifetime mapping by µPCD</td>
<td>✔</td>
</tr>
<tr>
<td>Micro-crack detection</td>
<td>✔</td>
</tr>
<tr>
<td>2D inspection</td>
<td>✔</td>
</tr>
<tr>
<td>Saw mark detection</td>
<td>✔</td>
</tr>
<tr>
<td>Edge chipping</td>
<td>✔</td>
</tr>
<tr>
<td>Surface contamination</td>
<td>✔</td>
</tr>
<tr>
<td>Grain size distribution</td>
<td>✔</td>
</tr>
<tr>
<td>Sori</td>
<td>✔</td>
</tr>
<tr>
<td>PL imaging</td>
<td>✔</td>
</tr>
</tbody>
</table>

Each module can be integrated into Semilab wafer sorter equipment
Many other tools under development
Sorter purpose:

- Eliminating damaged wafers from further process
- Sorting out potentially weak wafers (microcrack) which could break in further process steps
- Eliminating high thickness variation wafers (TTV, saw mark)
- Sorting out low lifetime wafers
- Sorting based on resistivity value

Application area:

- Outgoing wafer inspection for wafer manufacturers
- Incoming wafer inspection for solar cell manufacturers

An inspection line concept:
µ-PCD lifetime linescan measurement

- Periodic laser pulses excite the material generating free charge carriers, which recombine at recombination centers.
- This transient process is monitored by recording the reflected microwave power as a function of time.
- Since the MW reflection depends on the conductivity, the conductivity transient can be measured and evaluated.
- The transient curve is fitted and the extracted time constant is the lifetime, which characterizes the material quality.
• Conveyor belt moves during measurement
• Data can be recorded in 1 and 3 lines

Tools configuration

1 line
3 lines

1
3

1
3

1
3

1
3

1
3

Fast in-line lifetime mapping

- Fast in-line Lifetime Mapping (Fast-ILM) tool is using a novel way of transient \(\mu \)-PCD method
- It enables fast & full wafer data acquisition and lifetime evaluation.
- Fully compliant with requirements for in-line wafer characterization
- Acquisition time: < 1 s
- Resolution: 90 x 90 points
P/N tester measurement is based on the SPV (Surface Photovoltage) technique.

Resistivity measurement uses Eddy current technique.

Resistivity calculation needs thickness information.

Thickness is measured independently by double-sided distance measurement.

Distance measurement can be carried out in two ways:
- By capacitive probe
- By optical probe

Using the optical probe configuration saw marks can be also detected due to its fine lateral resolution.
2D geometry measurement

- By using back- and top-light – the contrast is measured.
- The following parameters are determined:
 - Side lengths
 - Diagonals
 - Angles
Edge Chipping, Surface Contamination

Two main inspection categories:

- Breakage, edge and chipping inspection (40µm pixel resolution, length, width, area and counting)
- Contamination (stain) inspection (80µm pixel resolution, length, width, area and counting)
- Grain distribution
- Sori

The Wafer Surface Station is performing an automatic measurement of chipping, contamination and edge defects. The system is using a complex illumination with two line scan cameras on each side and a PCs for image collection, processing and for user & process interface software. The Surface master profile software coordinates the measurements and sends the accumulated results for classification.
Imaging description

- A wafer is transported into the sensor unit.
- The wafer triggers a signal via a light barrier causing an image capture.
- The halogen lamp in the illumination unit illuminates the wafer.
- The camera captures an image. The wafer images are transmitted to the PC for image processing.
- The image processing software detects defects and classifies them according to the configuration.
- Individual inspection parameter sets can be configured and loaded for each type of wafer.
Microcrack inspection

Application:

- Microcrack inspection system
- Incoming wafer inspection and sorting

MCI System detects:

- Microcracks
 ![Microcracks](image1.png)

- Material inclusions
 ![Material inclusions](image2.png)

- Holes
 ![Holes](image3.png)
Photoluminescence measurement

• Applicable for wafers at any processing stage from as cut wafers to finished cells.

• High resolution images allow detection of
 • defects around grain boundaries, dislocations.
 • low lifetime areas on edge and corner wafers

• Wafer classification is based on statistics of full lifetime map.

• Correlation of PL and lifetime is carried out by calibration with simultaneous μ-PCD measurements.
Photoluminescence measurement principle

- Excitation of charge carriers is carried out with high intensity illumination
- Charge carriers recombine
- The radiative recombination is proportional with the product of electron and hole concentrations, and excess carrier concentration is proportional to the effective lifetime, thus rate of **radiative recombination is proportional to effective lifetime**
- During radiative recombination, a photon is emitted, which can be detected by an IR camera
- PL intensity is inversely proportional to defect density and impurity concentration
- Good imaging technique, but gives only relative results within the wafer
- To get quantitative results or wafer to wafer comparison, calibration is needed to absolute methods such as lifetime measurements
Comparing to μPCD map result

Photoluminescence:
156 mm mono-like wafer results
PL and \(\mu \)-PCD sensitivity regarding surface quality

- PL signal is sensitive to surface quality
- Comparison of as-cut and etched PL line-scans show high variation in PL signal
- MW-PCD line-scans on the same wafers show stable measured lifetime
- MW-PCD is a stable tool for monitoring as-cut wafers and can be used for calibration of PL

*accepted for the 27th European Photovoltaic Solar Energy Conference, 24-28 Sept 2012
Comparison of photoluminescence and MW-PCD

- Photoluminescence (PL) signal and MW-PCD lifetime shows excellent correlation on as-cut wafers
- Comparison of line-scan of PL images and MW-PCD lifetime map demonstrates that MW-PCD is valid tool for PL calibration
- Advantage: MW-PCD lifetime is much less sensitive on surface quality than PL*

*accepted for the 27th European Photovoltaic Solar Energy Conference, 24-28 Sept 2012
In conventional steady-state and quasi-steady-state methods the lifetime is calculated from two measured quantities; 1) the magnitude of photoconductivity $\Delta \sigma$, e.g. by Eddy current and 2) the generation rate G, e.g. by measuring illumination intensity and 3) knowing the carrier mobilities $(\mu_n + \mu_p)$.

steady-state equation: \[\tau_{\text{eff}} (\Delta n) = \Delta n / G \ldots \quad 1. \]

The **QSS-µ-PCD** is using another approach:
- Basore and Hansen (1990) derived equations describing the excess carrier decay after small perturbation laser pulse excitation on background of steady-state light bias.
- Therefore in **QSS-µ-PCD**, τ_{eff} is obtained directly from the time decay of photoconductivity $\Delta \sigma$ measured in linear microwave reflectance range after short laser pulse.
- The QSS generation rate G is pre-calibrated. Therefore, the steady-state equation can be reversed giving the injection level, Δn.

reverse procedure: \[\Delta n = G \cdot \tau_{\text{eff,ss}} \ldots \quad 2. \]

Equation 2 relates Δn and τ_{eff} and defines the injection level. There is:
- no need for absolute $\Delta \sigma$ calibration
- no need to know $(\mu_n + \mu_p)$
- no need to precisely know G in laser pulse

➢ **Direct measurement & mapping of QSS-µ-PCD lifetime.**
QSS-µ-PCD PRINCIPLE
(QUASI ≡ ALMOST)

small perturbation method

Life time is measured at different steady-state generation values G, which are varied in time intervals larger than lifetime. µ-PCD laser power is small compared to G (small perturbation). Each \(\tau_1 \), \(\tau_2 \) ... corresponds to well-defined injection levels \(\Delta n_1 \), \(\Delta n_2 \) ...

Note: Steady illumination from wafer back side can also be used when wafer support and reflector plate are transparent to light.
• Steady-state lifetime $\tau_{\text{eff.ss}}$ is obtained from decay lifetime $\tau_{\text{eff.d}}$ by integration over light intensity (procedure of Schuurman et. al 1997)
• No wafer parameters are required
• Results are compared with Sinton’s QSSPC*

*accepted for the 27th European Photovoltaic Solar Energy Conference, 24-28 Sept 2012
Thank you!

For All Your Metrology Needs