Flexible Hybrid Electronics Fabricated with High-Performance COTS ICs using RTI CircuitFilm™ Technology

Scott Goodwin¹, Erik Vick² and Dorota Temple²

¹Micross Advanced Interconnect Technology
Micross Components, Research Triangle Park, NC

²Engineered Materials, Devices and Systems
RTI International, Research Triangle Park, NC

June 21, 2017
Technologies
- Developmental foundry for microfabrication and 3D microsystem Integration
- Thermal management solutions for integrated microsystems
- Novel microfabricated sensors

Core strengths
- Advanced semiconductor processing equipment and analytical instrumentation
- 25 years+ track record in microelectronics and optoelectronics technology development
- Diverse client base: government, commercial and academic—translational research
- Collaborative research with RTI International
Micross Wafer-Level Microsystem Integration

Extensive toolbox of wafer-level microsystem integration techniques to reduce size, weight and power and enhance performance of electronic components and systems.
Emergence of Flexible Hybrid Electronics

Flexible Hybrid Microsystem

- Ultrathin battery
- Microcontroller
- Communicators (comm)
- Sensors
- Antenna

Printed transistors and passives

Flexible Electronics

- Roll-to-roll processes

Electronic Packaging

- Sheet-to-sheet or wafer-to-wafer processes

Si CMOS ICs

Wafer Chip Package Printed Circuit Board (PCB)
Commercial and Defense Applications of FHE Microsystems

- Flexible electronic systems for use in limited space applications where there is not enough physical space for rigid boards
 - Small missile systems, UAVs
- Conformal surface applications for antennas and associated electronics
 - Airframe surfaces
 - Infantry uniforms and flexible armor
- Support electronics for small form factor displays
- Wearable sensors
 - Fully flexible, thin and light while incorporating advanced data processors and RF transmitters and transceivers for wireless communications

- Calls for **high-performance** integrated circuits (ICs)
- Ease of system design requires ICs to be COTS
Process Technology Dilemma and Potential Solution

- Progress in development of bottom up process technology for fabrication of thin-film transistors on flexible substrates
 - Compatibility with wide range of flexible substrates
 - Uses low temperature processing techniques, such as printing or physical vapor deposition
- Performance of thin-film transistors has been limited to cutoff frequencies in MHz range for a long time
- State-of-the-art ICs built in monocrystalline materials have cutoff frequencies in GHz to THz range.
- Paradigm shift in properties of traditional monocrystalline ICs was introduced by development of 3D IC integration technology—ICs can be thin, light, bendable without impact on performance.
- Opens doors to embedding of ultra-thin monocrystalline ICs in flexible substrates.
Key process modules include wafer thinning, bonding and bump and direct interconnects.
RTI CircuitFilm™

CircuitFilm™

- ultrathin battery
- microcontroller
- sensors
- antenna

COTS devices are thinned and embedded in a polymer

Benefits:
- Use of best-in-class COTS components
- Integration of mixed semiconductor technologies (e.g., Si, GaAs, HgCdTe, etc.)
- Rapid design-to-delivery cycle time
- Includes integration of passives
- Direct interconnects
- Potential for full integration including power

Applications:
- Defense and security
- Implantable medical devices
- Wearable physiological sensors
- Fabricated using conventional wafer processing
- Can use known good COTS die
- Release from handle wafer at conclusion of processing
- COTS die passivated by flexible substrate and MLM dielectrics
Design Considerations

- Path needed from PCB-based design to FHE-based design
- While there are broad similarities between PC Board design and thin flexible systems design, there are important differences that need to be addressed
 - Different design tools in PC Board design and IC design
 - Thin flexible systems will exist in both design spaces
 - Most tools can adapt to FHE systems with relatively small changes
 - Need better layout to GDS file conversions
 - Different scale and dimensions in the physical traces between PC Boards and thin flexible systems
 - Generally small dimensions and fewer layers in thin flexible systems than in PC Boards
 - Different RF performance, ground and power plane resistances, different parasitics
 - Concepts of power, testing, and connectors are different
Passives

- Passives are key to being able to integrate COTS parts into a complete system on a flexible substrate
- Some passives are commercially available that are thin enough to be incorporated into CircuitFilm™ substrates
 - Too thick and air bubbles can form around edges
 - IPDIA has 100µm thick capacitors available
- Small capacitors and resistors can be fabricated from MLM levels
- We fabricated inductors on 100µm thick quartz substrates 1.4nH to 61nH on 2mm die
- Resistors could be fabricated with appropriate choice of metals on wafers that are thinned

Additional commercial suppliers needed
Other Issues

- Availability of ICs of different materials and device types in thinned formats or that can be thinned

- Connectors to thin flexible films
 - Need new designs with either mechanical or metallurgical interfaces that are compatible with thin flexible films
 - Some designs may be wirelessly interfaced
 - Testing of thin flexible film systems
 - Use of temporary connectors or probes
 - Testing only possible of completed systems

- Power sources
 - Require thin and flexible, capable of process integration

- Reduced substrate thickness may place antenna elements near ground planes
 - Reduces antenna operating bandwidth, reduces data rates
- PLL RF Transmitter based on Atmel T5750
 - Uses bare die Atmel T5750, MEMS oscillator, passive inductor and capacitor, additional resistor and capacitors fabricated in wiring levels
 - Two wiring levels
 - 21.1 x 13.4 mm
Fabricated Demonstration Circuit

- Based on Atmel RF Transmitter bare die
- Air bubbles formed around unthinned MEMS oscillator die
 - Tears in overlying thin polymer layers
 - Repaired with silver colloidal paste
Operation of Completed CircuitFilm™ Demonstration

- Atmel RF transmitter generates ASK signal from input signal (1kHz) and oscillator output
 - Increases oscillator frequency 64X
 - $64 \times 14.318\text{MHz} = 916.4\text{MHz}$
- Probed while still on carrier wafer
- Measured using spectrum analyzer

Frequency sweep of output showing peak at 916.4MHz

Transformed output generated by spectrum analyzer showing 1kHz signal 45µW output signal
Operation of Completed CircuitFilm™ Demonstration

- Circuit released from handle wafer
- Probed flat
- Probed on curved surface
 - Radius = 44 mm

Released CircuitFilm™ probed on flat surface

Released CircuitFilm™ Probed on curved surface
RF transmission test using two random length long wire antennas (42 inches) connected to output of circuit. Measure expected power decrease of 6dBm with doubled distance.

~ -80dBm at ~260ft
Mechanical Flexing Testing

- Mechanical testing of parametric test circuits has been done
- Circuits investigate different aspects of CircuitFilm™ technology
 - Integrity of CircuitFilm™ metal lines
 - Integrity of CircuitFilm™ vias
 - Integrity of metal lines routed up over embedded passives
 - Integrity of direct interconnects to contact chain passive
- Flexed multiple cycles with different radii and directions of curvature
 - Radii of 11mm and 22mm
 - Cumulative flexed cycles up to 11,000
 - No formation of open circuits in any of the test sites
- Testing continuing
Conclusions

- New, emerging opportunities in thin flexible hybrid microsystems
 - Defense and security applications, implantable medical devices, wearable physiological sensors
 - Paradigm shift from traditional printed circuit board systems

- Development of 3D IC integration technology opens pathway for fabrication of ultra-thin monocrystalline ICs with excellent performance

- RTI CircuitFilm™ technology incorporates thinned COTS devices in flexible polymer film
 - Best-in-class COTS devices and performance

- Design tools and design methodology need to be adjusted for flexible hybrid microsystems
 - Thinner and finer pitch metal lines available on IC processing tools

- First demonstration circuit fabricated using CircuitFilm™ technology
 - Demonstrates incorporation of thinned COTS die, direct interconnect, and passive components
 - Fully functional circuit on handle wafer and released flexible film
This material is based upon work supported in part by the U.S. Army Research Laboratory and the U.S. Army Research Office under contract number W911NF-14-C-0100.

Thanks to the staff of Micross Micro-Fabrication Facility and Analytical Laboratory