Growing MEMS Markets by Rethinking Manufacturing

BSAC Manufacturing Workshop:

Growing MEMS Markets by Rethinking Manufacturing

By Paula Doe, SEMI

Whatever the specific predictions for a vast Internet of Things, or the future market for a trillion sensors, it’s clear the world is moving towards new possibilities of using more sensors in more places to collect more data to do more things. The interesting question is what’s needed to take advantage of these kinds of potential opportunities, with proposed solutions ranging from open platforms and more integrated functionality, to printed sensors and batch assembly processes. 

Leading MEMS technologists at the recent Berkeley Sensor and Actuator Center research overview meeting argued that enabling big future growth of sensors would require disruptive lower-cost manufacturing technologies— with more open platforms and more system thinking, to open development to a much wider range of creative minds to develop more applications.            

Fast-growing demand for MEMS sensors is already turning the niche into a much more mature industry, moving towards stable high-volume production capability, tinier and lower cost devices, ever improving performance, easy-to-integrate functions, and even faster time-to-market.  But potentially huge future sensor applications will require more innovative manufacturing technologies and designs to reduce costs, as well as more focus on adding value beyond just the component, by things like integrating more sensor data and more intelligence to add functions to systems.

Major growth of markets for complex technological systems has often been enabled by de-coupling design from manufacturing, argued Kaigham (Ken) Gabriel, now moved from DARPA to Corporate VP for advanced technology at Motorola Mobility. “This means a conscious throwing away of performance at the component level to shift the design emphasis to the system, and to handling complexity,” he explained. Most obvious example is the IC industry, where the fabless model expanded the numbers of chip designers from thousands to tens of thousands and greatly increased the diversity of ideas and new products. But he also argued the same trends were evident across electronic systems, where the separation of assemblers from higher-level programming languages helped expand the development of new functions. A more recent example may be the wider availability of affordable and better quality 3D printing tools, which have opened that technology platform to such unexpected uses as the 30,000 3D printed faces with different expressions that animators made for Norman for the movie ParaNorman. Gabriel argued that scaling up accessible platforms to produce large networks of sensors would similarly enable many as yet unimagined applications, noting French World War I hero Marshal Foch’s famous opinion that airplanes were interesting toys, but of no military value. “That’s why it’s important to scale up production—we create new things by building,” noted Gabriel.

A major TerraSwarm research project, funded by DARPA and Semiconductor Research Corp. (SRC) industry partners, aims to build such an open common platform for wireless sensor networks. “The goal is an applications development platform to unleash lots of creative minds to figure out what to do with sensor networks,” explained UC Berkeley professor Edward Lee, noting how the Apple apps platform similarly enabled a range of applications unimagined just a few years ago. He argued that wireless sensor networks had yet to developed as projected because they so far worked only as closed systems.

Trillion Sensor VisionsThe attractiveness of competing in 100x larger markets using proprietary design as competitive advantage, as opposed to using both proprietary process and design as now, may encourage companies to cooperate to develop standard MEMS manufacturing processes, argued Janusz Bryzek, VP for MEMS and sensing solutions at Fairchild Semiconductor.  While mainstream MEMS analysts don’t see these gigantic markets looming yet for huge networks of low cost sensors, given current technology and cost constraints, big growth in technology markets has often come from applications that were not predicted. Companies like Bosch, Hewlett-Packard and Intel are all now looking at applications of sensor data from large networks of sensors, for everything from oil field monitoring to mobile context awareness to home health monitoring.

 But to enable such wide adoption of sensor data, MEMS makers will need to find ways to significantly reduce development time to months instead of years, and find ways to use more standard production processes, to continue to reduce sensor size and cost. When inevitably asked about the impossibility of standard processes for MEMS, Bryzek pointed out that past standard processes such as Sandia’s Summit V and Memscap’s MUMPS had limited capability for high-volume applications, but InvenSense’s more recent open high-volume capacitive inertial sensor process had made several runs of multi-project wafers with designs from a broad range of organizations.  And the main families of capacitive sensors may be settling around some common approaches.  Other panelists noted that MEMS sensors were probably now good enough for most applications, and the value was clearly moving from the sensor to the system in any case.

Some of the ultra-high volume, ultra-low cost sensor applications will need a new manufacturing paradigm, such as roll-to-roll 3D printing, Bryzek suggests. And accelerating the development time will need a roadmap. He is organizing a workshop at Stanford University this fall to identify the likely future ultra high-volume sensor applications, the future technology needed to produce them, and potential pre-competitive mechanisms such as consortiums to fund that work.

Other growth drivers: Lowering assembly costs, turning data into information, adding functionality

Enabling sensor networks will certainly require some low-cost wireless transmission of signals, and some low-cost solutions for assembling lots of tiny die. Alien Technology CTO and founder John Stephen Smith reported the company’s tiny, low-cost passive RF ID tags suggest a possible solution. The tags are currently being used for live inventory control of clothing at Macy’s, J.C. Penney’s and Walmart, as well as in railroad ties to track age and need for replacement, and in strip mines to track which areas particular ores come from. The company has reduced the cost of these simple RF ID tags to pennies, in part by reducing the silicon die size to a mere 0.5mm x 0.5mm, making handling and assembling the tiny units onto the antenna/substrate the most expensive part of production. To significantly reduce the cost of traditional pick and place assembly, Alien turned to KOH-etching the backside of the die into a faceted shape, and then using microfluidics to flow the units into matching depressions across the substrate.  Smith says this efficient batch process can reduce assembly costs from $0.01 to $0.001 per unit.

One impressive example of an innovative sensor, and how integrating data from multiple sensors can add real value, is Proteus Digital Health’s progress towards getting early warning of impending health crises by analyzing data from its pill sensors with that of sleep patterns from an accelerometer. Its sensor uses MEMS-like planar processes to add copper and magnesium layers to a tiny chip, which are activated by stomach acid when swallowed, to send a signal to a receiver in a bandaid-like patch worn by the user. An accelerometer in the patch meanwhile records the user’s activity. Both signals are sent to a smart phone or computer for analysis. “Now the data from the patch becomes information,” said CTO and co-founder Mark Zdeblick, showing charts of skipped doses and highly disrupted sleep patterns that typically predict the onset of problems for those with mental illness. He notes that most people with real medication-dependent diseases don’t mind wearing the patch because the downside is so much worse. The company is exploring how the mobile phone could help remind or reward people to take their medication, by texting reminders, by notifying friends or relatives, or by offering little rewards like a video of the day’s soccer highlights or a donation of a dose to help save someone’s life in Africa.

And the power of integrating more functions by smarter processing looks to continue to spur MEMS growth, now interestingly spreading even to MEMS timing, traditionally a more discrete feature than, say, inertial sensing “Customers are now asking for functions, such as multiple clocks, or a sleep/wake up feature,” reported Mark Lutz, VP and co-founder of SiTime.  “MEMS timing has typically been a replacement market for a decent established technology, but adding new functions really opens things up….The newest MEMS timing results out-perform quartz, and they will continue to improve, but now it’s about what else can we do with this.” He also noted the possibility of integrating the resonators in a single system-in-package with a microcontroller or a front end modem instead of as separately packaged components.

Upcoming SEMICON exhibitions with MEMS sessions:

At SEMICON Russia 2013 on June 5, attend the all-day “Market and Technology Outlook in Russia” session. More information: www.semiconrussia.org/en/Programs/MEMSSession

The MEMS program at SEMICON West 2013 on July 9 will focus on issues like the above to enable the added value for the next generation of MEMS devices . See: www.semiconwest.org/SessionsEvents/MEMS

SEMI
www.semi.org
April 9, 2013