Being "Idle" to Make Money

By James Amano, SEMI International Standards

As the fall leaves scatter and blow, I’d love to be idle out on the lawn, under a tree with a hot drink within reach.  However, with our industry hitting new highs, and emails flying as if from a popcorn popper, there’s no chance of that.  While I can’t be idle, fabs are dropping their expenses – by demanding their equipment be idle.

Big Watts

Semiconductor fabs use a tremendous amount of electricity.  Large fabs use as much as 100 megawatt-hour (MW-hr) each hour.  A fab uses as much power as 50,000 homes.1 A McKinsey study noted that semiconductor fabs consume more electricity than automobile plants and oil refineries.  Large fabs (depending on location and rates) can use upwards of $25M of electricity per year and electricity can account for up to 30 percent of operating costs.

Fabs use electricity to power HVAC, run cooling water, and for basic infrastructure, but the great majority of electricity is consumed by semiconductor manufacturing process tools and their sub-fab support equipment such as vacuum pumps and abatement systems.  In a typical fab as much as 44 percent of the electricity is consumed by the processing equipment2.  It’s not so hard to imagine.  Etch and deposition tools need power to strike and sustain plasma, with multiple 1,000+ Watt RF power supply feeds per chamber and four, six or more chambers per tool, and vacuum pumps spinning and abatement running … the power load adds up quickly.

Watts and Watts

The good news is that process tools aren’t processing wafers all the time.  The bad news is that, in the past, there was no good way for the fab to know when process tools and support equipment weren’t running processes. Turning equipment off, or reducing power when not processing, wasn’t coordinated and standby states weren’t defined for readiness for a seamless power-up and return to processing. 

Industry volunteers got together within SEMI’s Standards program and defined an equipment “idle mode,” (SEMI E167 and SEMI S233).  More recently, a SEMI Standard (SEMI E1754) was developed to define energy saving modes – how process tools communicate with sub-fab equipment, to reduce utility consumption when wafers are not being processed by the tool.  Importantly, it also provides guidance on the standby state to return to full performance when the tool is needed to process wafers.5

Good to be Idle

The semiconductor industry is now increasingly adopting a “smart idle” approach using these SEMI Standards.  AIS Automation has done modeling indicating a potential for more than 4.3M € in annual savings by implementing these Standards to take advantage of process tool idle states.6  This study also points to a savings of more than 16,000 tons of CO2 per year (the equivalent of taking more than 10,000 cars off the road).

Who knew that recognizing when to be idle could bring such big rewards?  If only I could apply that to my own life, but, for now, I will have to leave it to the fabs. 

SEMI International Standards volunteers make a huge difference to our industry every day.  If you want to join the over 5,000 SEMI Standards volunteers (or join SEMI’s Sustainable Manufacturing eForum), with representation from over 2,000 companies, it’s free!  Don’t be idle for this one, click here to join!


1Bringing Energy Efficiency to the Fab, McKinsey 2013


3SEMI E167-1213 - Specification for Equipment Energy Saving Mode Communications (EESM)

3SEMI S23-0813 - Guide for Conservation of Energy, Utilities and Materials Used by Semiconductor Manufacturing Equipment

4SEMI E175-1116 - Specification for Subsystem Energy Saving Mode Communication (SESMC)


6SEMI Standards a Potential Help for Saving Energy, Bert Mueller, AIS Automation 2016

Global Update
October 17, 2017