材料市場 - SEMI

半導體材料市場
 

SEMI半導體材料資訊收集,涵括北美、日本、歐洲、韓國、台灣、中國與其他世界各地,六不同半導體材料類市場收益數據。此外,SEMI也與其他組織合作,以涵概其他的半導體材料市場數據。這是唯一針對不同的區域材料數據所提供的資訊。包括全球各公司的晶圓製成材料、與封裝材料之季報。

半導體材料報告

Materials Market Data Subscription
材料市場數據期刊訂閱提供目前的收益數據、過去兩年的歷史數據、以及未來三年的預測數據。每一個材料分類報告都包括七個市場區域(北美、歐洲、ROW、日本、台灣、韓國與中國)的收益。此報告同時也提供詳細的歷史資訊:包括矽沙(silicon)、顯相抗蝕劑(photoresist)、補助抗蝕劑(photoresist ancillaries)、處理氣體(process gases)、與導線架(leadframes)。本報告於每季結帳後的第六星期出刊。

Silicon Reclaim Wafer Characterization Summary (Report)
再生晶圓市場總結(報告)

Photomask Characterization Summary (Report)
光罩市場總結(報告)

Global Semiconductor Packaging Materials Outlook
全球半導體封裝材料展望是一份廣泛且充份的市場研究報告,它檢視半導體封裝技術趨勢,與此技術對超過一百六十億美元的封裝材料市場的衝擊及影響。封裝材料市場的大量化,讓新的市場契機顯現,本預測展望的預測資料呈現至2011年。

  

SEMI 會員獨享-- 材料市場簡介

凡SEMI 會員可免費瀏覽我們所提供之材料市場簡介文摘若您想進一步擁有完整的市場資訊點此購買完整的報告

【說明】本符號 Member Only Content 代表為「SEMI會員獨享」之資訊
若您已為
SEMI會員 : 初次登錄請先註冊您就能開始瀏覽專屬於會員的資訊!
若您還不是
SEMI會員 : 請了解更多有關 加入SEMI 會員的好處

Member Only Content 2009 SEMI Materials Brief: Semiconductor Anti-Reflective Coatings (PDF)
Extending performance of lithography and photoresists to meet shrinking device requirements is challenged by film properties on levels such as polysilicon, aluminum, and copper. Patterning devices during lithography exposure is difficult due to the highly reflective nature of these films, varying photoresist thickness, and device topography. In order to minimize these effects, materials called anti-reflective coatings (ARC) are applied to wafers either immediately before or after photoresist coating.

Member Only Content 2009 SEMI Materials Brief: Bonding Wire (PDF)
Wire bonding is used throughout the microelectronics industry as a means of interconnecting chips, substrates, and output pins. Wire forms the connections between the bond pad on the IC and the bonding fingers of the leadframe, plastic laminate, or ceramic substrate. The bonding method utilized is a function of the wire material and the substrate.

Member Only Content 2009 SEMI Materials Brief: Chemical Mechanical Planarization Materials (PDF)
The manufacture of a semiconductor device is essentially achieved by building alternating layers of metal and insulator materials on a silicon substrate. Prior to the 1990s Chemical Mechanical Planarization (CMP) was looked on as too "dirty" to be included in high-precision fabrication processes, since abrasion tends to create particles and the abrasives themselves are not without impurities. However, given the small size and complexity of today’s advanced semiconductor devices, it is essential that these layers be extremely flat for lithographic processing. In order to achieve the required flatness, CMP is utilized

Member Only Content 2009 SEMI Materials Brief: Semiconductor Photoresists Developers (PDF)
Aqueous or water-based developers are used in the lithography process to pattern photoresist films immediately after the exposure process. For positive photoresists, the developer removes film in the exposed wafer regions to produce device patterns. For negative photoresists, the developer removes film in the unexposed wafer regions to produce device patterns.

Member Only Content 2009 SEMI Materials Brief: Organic Substrates (PDF)
In the past decade, high volume IC packaging has shifted from the era of ceramic packages to organic substrate-based packages, especially the plastic ball grid array (PBGA). The shift from ceramic to laminate substrates for packaging central processing unit (CPU) microprocessors facilitated this migration to organic substrates by providing a volume application that enabled the technology to mature faster. Flex circuit or tape substrates are a niche market for large die packaging, but are also used in volume for chip scale packages (CSPs) including some stacked die packages. Increasingly many of the new CSP designs are using a rigid laminate substrate rather than flex circuit.

Member Only Content 2009 SEMI Materials Brief: Die Attach Materials (PDF)
Die attach materials provide the mechanical and thermal connection between the semiconductor device and the package. These materials are used in paste, tape or solder form. This market brief covers paste and tape materials only.

Member Only Content 2009 SEMI Materials Brief: Encapsulant Materials (PDF)
Encapsulant materials are polymeric-based materials used to provide mechanical and environmental protection of a semiconductor device. Mold compounds, underfill, and liquid encapsulants fall into this category. At the most basic level, these materials are formulated using a combination of raw materials: organic resins, fillers, catalysts, and a pigment or coloration. Additives include flame retardants, adhesion promoters, mold release materials, ion traps, and stress relievers.

Member Only Content 2009 SEMI Materials Brief: Leadframes (PDF)
A leadframe consists of a die mounting paddle and lead fingers. The die paddle serves primarily to mechanically support the die during package manufacture. The lead fingers connect the die to the circuitry external to the package.

 

SEMI Materials Brief Archives 

Member Only Content 2008 SEMI Materials Brief: Semiconductor Anti-Reflective Coatings (PDF)

Member Only Content 2008 SEMI Materials Brief: Semiconductor Photoresists (PDF)
Improvements in semiconductor performance continue to be made, largely driven by advances in optical lithography equipment, photomask, and photoresist (resist) materials. In particular, the design and development of photoresists that are sensitive to short exposure wavelengths have enabled the industry to migrate to smaller device sizes. Photoresist allows precise pattern formation upon exposure to light through a template called a photomask and subsequent etching of portions of the photoresist, resulting in the permanent transfer of patterns to the wafer substrate.

Member Only Content 2008 SEMI Materials Brief: Semiconductor Photoresist Removers (PDF)
Removal Materials are wet chemical solutions used to remove the photoresist left on the wafer after processing as well as for cleaning wafers immediately after etch processes on aluminum (Al), tungsten (W), titanium (Ti), titanium nitride (TiN), dielectric oxides, and polysilicon surfaces. Resist removal for greater than 0.50 micron geometries is referred to as a wet-wet process, since these chemical solutions are used to remove both the photoresist mask and photoresist residues.

Member Only Content 2008 SEMI Materials Brief: Semiconductor Photoresists Developers (PDF)

Member Only Content 2008 SEMI Materials Brief: Polycrystalline Silicon (PDF)
Polycrystalline silicon, also called poly or polysilicon, is one of the purest materials ever manufactured by mankind. Nonetheless, much work is still being done to reduce metal contamination levels and improve uniformity. It is used as the charge material in the silicon ingot growth process and therefore dictates the purity of wafers.

Member Only Content 2008 SEMI Materials Brief: Encapsulant Materials (PDF)

Member Only Content 2008 SEMI Materials Brief: Die Attach Materials (PDF)

Member Only Content 2008 SEMI Materials Brief: Leadframes (PDF)

Member Only Content 2008 SEMI Materials Brief: Bonding Wire (PDF)

Member Only Content 2008 Materials Brief: Semiconductor Photomasks (PDF)
A photomask, also called a reticle, is a transparent glass or quartz plate with an array of patterns or images. These materials permit the passage of light in intricate and precise patterns. The patterns or images emerge by creating transparent and opaque regions on the plate through the photolithography process in semiconductor manufacturing. Each pattern consists of opaque and transparent areas that precisely control the passage of light to cast the image of the size and shape of the device elements in a semiconductor circuit.

Member Only Content 2008 SEMI Materials Brief: Chemical Mechanical Planarization Materials (PDF)
.

Member Only Content 2008 SEMI Materials Brief: Sputtering Targets (PDF)
Sputtering is a type of physical vapor deposition (PVD) that is used to deposit thin films onto various surfaces (e.g. semiconductor wafers) by physical means, as compared to chemical vapor deposition (CVD). In PVD, the target source is bombarded with argon ions, which knock off atoms from the target that coat a receiving wafer creating a uniform metal film on the wafer.

Member Only Content 2008 SEMI Materials Brief: Semiconductor Process Chemicals (PDF)
The International Technology Road Map for Semiconductors (ITRS) outlines increasingly higher chemical purity levels required by the semiconductor industry. Currently, there are several grades of chemicals available, and the migration to the highest purity levels has been relatively slow. This can be attributed to the substantially higher costs associated with producing these chemicals and their associated higher prices.

Member Only Content 2007 SEMI Materials Brief: Organic Substrates (PDF)

Member Only Content 2007 SEMI Materials Brief: Silicon-on-Insulator (SOI) Wafters (PDF)
Silicon-on-insulator (SOI) wafers were first developed for military applications in the 1960s. During the past 45 years, SOI technology has evolved and is being be adopted in the production of very sophisticated semiconductor devices.

Member Only Content 2007 SEMI Materials Brief: Prime Polished Silicon Wafers (PDF)
A wafer is a thin slice of semiconducting material upon which microcircuits are constructed by doping (via diffusion or ion implantation), chemical etching, and deposition of various materials.

Member Only Content 2007 SEMI Materials Brief: Epitaxial or Epi Silicon Wafers (PDF)
There are two types of epitaxial or epi silicon wafers used in the semiconductor industry: discrete and MOS.